HURWITZ THEOREM:

<u>Statement</u>: If the functions $f_n(z)$ are analytic and $\neq 0$ in a region Ω and if $f_n(z)$ converges to f(z) uniformly on every compact subset of Ω , then f(z) is either identically zero or never equal to zero in Ω .

Proof:

Given that $f_n(z)$ are analytic and $\neq 0$ in a region Ω .

Also given that $f_n(z)$ converges to f(z) uniformly on every compact subset of Ω .

Therefore, by theorem 1 f(z) is analytic in Ω .

<u>Claim</u>: $f(z) \equiv 0 \ \forall \ z \in \Omega \text{ or } f(z) \neq 0 \ \forall \ z \in \Omega.$

Suppose $f(z) \equiv 0 \ \forall \ z \in \Omega$, then the theorem is true.

Suppose not, then we have to prove $f(z) \neq 0 \ \forall \ z \in \Omega$.

Let $z_0 \in \Omega$. Then there exists r > 0 such that $f(z) \neq 0$ on $0 < |z - z_0| \le r$ and |f(z)| has a positive minimum of the circle C, $|z - z_0| = r$.

Thus $\frac{1}{f(z)}$ has a maximum on C.

Now $\frac{1}{f_n(z)} \to \frac{1}{f(z)}$ uniformly on C, since $f_n(z) \to f(z)$ uniformly on C.

Also $f'_n(z) \to f'(z)$ uniformly on C.

Therefore $\frac{f'_n(z)}{f_n(z)} \to \frac{f'(z)}{f(z)}$ on C.

That is, $\lim_{n\to\infty} \frac{1}{2\pi i} \int_c \frac{f_n'(z)}{f_n(z)} dz = \frac{1}{2\pi i} \int_c \frac{f'(z)}{f(z)} dz$.

We know that $\frac{1}{2\pi i} \int_C \frac{f_n'(z)}{f_n(z)} dz$ is the number of zeros of $f_n(z)$ enclosed by C.

Since $f_n(z) \neq 0$ on Ω , we get $f_n(z) \neq 0$ on C.

Hence $\lim_{n\to\infty} \frac{1}{2\pi i} \int_C \frac{f_n'(z)}{f_n(z)} dz = 0.$

This implies $\int_{C} \frac{1}{2\pi i} \int_{C} \frac{f'(z)}{f(z)} dz = 0.$

i.e, The number of zeros of f(z) enclosed by C = 0.

This implies $f(z_0) \neq 0$. Since z_0 is arbitrary, $f(z) \neq 0$ for all z in Ω

Taylor series:

Statement:

If f(z) is analytic in the region Ω , containing z_0 , then the representation

$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + \dots$$

Is valid in the largest open disk of center z_0 contained in Ω .

Proof: By taylor's theorem,

WKT
$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + f_{n+1}(z)(z - z_0)^{n+1}$$

Where $f_{n+1}(z) = \frac{1}{2\pi i} \int_{\mathcal{C}} \frac{f(\xi)d\xi}{(\xi-z_0)^{n+1}(\xi-z)}$. Here C is the circle $|\xi-z_0| \leq r$ contained in Ω and z lies inside C.

Let M denote the maximum of $|f(\xi)|$ on C.

Then
$$|f_{n+1}(z)(z-z_0)^{n+1}| \le \frac{1}{2\pi} \int_C \frac{|f(\xi)||d\xi|}{|\xi-z_0|^{n+1}|\xi-z|} |z-z_0|^{n+1}$$

$$\le \frac{1}{2\pi} M |z-z_0|^{n+1} \int_C \frac{|d\xi|}{|\xi-z_0|^{n+1}(|\xi-z_0+z_0-z|)}$$

$$\le \frac{M|z-z_0|^{n+1}}{2\pi r^{n+1}(r-|z-z_0|)} \int_C |d\xi|$$

$$= \frac{M|z-z_0|^{n+1}2\pi r}{2\pi r^{n+1}(r-|z-z_0|)}$$

$$= \frac{M|z-z_0|^{n+1}}{r^n(r-|z-z_0|)}$$

For z lying in a closed disk $|z-z_0| \le \rho < r$, we have

$$|f_{n+1}(z)(z-z_0)^{n+1}| \le \frac{M\rho^{n+1}}{r^n(r-\rho)}$$

$$= \frac{M\rho}{r-\rho} \left(\frac{\rho}{r}\right)^n \to 0 \text{ as } n \to \infty$$

Hence
$$f(z) = f(z_0) + \frac{f'(z_0)}{1!}(z - z_0) + \frac{f''(z_0)}{2!}(z - z_0)^2 + \dots + \frac{f^{(n)}(z_0)}{n!}(z - z_0)^n + \dots$$

Mittag- Leffler's theorem:

Let $\{b_{\gamma}\}$ be a sequence of complex numbers with $\lim_{\gamma \to \infty} b_{\gamma} = \infty$ and let $P_{\gamma}(\xi)$ be polynomial without constant term. Then there are functions which are meromorphic in the whole plane with poles at the points b_{γ} and the corresponding singular part $P_{\gamma}(\frac{1}{z-b_{\gamma}})$. Moreover the most general meromorphic function of this kind can be written as

 $f(z) = \sum_{\gamma} \left[P_{\gamma} \left(\frac{1}{z - b_{\gamma}} \right) - P_{\gamma}(z) \right] + g(z)$ where $P_{\gamma}(z)$ are suitably chosen polynomials and g(z) is analytic in the whole plane.

Proof: The function $P_{\gamma}\left(\frac{1}{z-b_{\gamma}}\right)$ is analytic in $|z| < |b_{\gamma}|$.

This implies $P_{\gamma}\left(\frac{1}{z-b_{\gamma}}\right)$ has a taylor series expansion about the point zero.

Let $p_{\gamma}(z)$ be the partial sum of the series ending with the term of degree n_{γ} .

Let M_{γ} be the maximum value of $P_{\gamma}(\xi)$ on $|\xi| \leq |\frac{b_{\gamma}}{2}|$, then for $|z| \leq |\frac{b_{\gamma}}{4}|$

$$\begin{aligned} \left| P_{\gamma} \left(\frac{1}{z - b_{\gamma}} \right) - p_{\gamma}(z) \right| &= \left| p_{\gamma+1}(z) (z)^{n_{\gamma}+1} \right| \\ &= \left| (z)^{n_{\gamma}+1} \frac{1}{2\pi i} \int_{|\xi| = \left| \frac{b_{\gamma}}{2} \right|} \frac{P_{\gamma}(\xi) d\xi}{\xi^{n_{\gamma}+1} (\xi - z)} \right| \\ &\leq |z|^{n_{\gamma}+1} \frac{1}{2\pi} \frac{M_{\gamma}}{\left(\frac{b_{\gamma}}{2} \right)^{n_{\gamma}+1}} \frac{2\pi \left| \frac{b_{\gamma}}{2} \right|}{\left| \frac{b_{\gamma}}{4} \right|} \\ &= 2M_{\gamma} \left(\frac{2|z|}{|b_{\gamma}|} \right)^{n_{\gamma}+1} \\ &\leq \left(\frac{1}{2^{2}} \right)^{n_{\gamma}+1} M_{\gamma} 2^{n_{\gamma}+2} \end{aligned}$$

Now choose n_{γ} such that $2^{n_{\gamma}} \ge M_{\gamma} 2^{\gamma}$.

Then
$$\left| P_{\gamma} \left(\frac{1}{z - b_{\gamma}} \right) - p_{\gamma}(z) \right| \le \left(\frac{1}{2^2} \right)^{n_{\gamma} + 1} \frac{2^{n_{\gamma}}}{2^{\gamma}} 2^{n_{\gamma} + 2} = \frac{1}{2^{\gamma}}$$

But $\sum \frac{1}{2^{\gamma}}$ converges and so by comparison test, $\sum_{\gamma} \left[P_{\gamma} \left(\frac{1}{z - b_{\gamma}} \right) - p_{\gamma}(z) \right]$ converges to a function h(z)

Hence h(z) is a meromorphic function with singular part $P_{\gamma}\left(\frac{1}{z-b_{\gamma}}\right)$.

Let f(z) be a meromorphic function with poles b_{γ} .

Then g(z)=f(z)-h(z) is an analytic function in the whole plane.

That is
$$f(z) = h(z) + g(z) = \sum_{\gamma} \left[P_{\gamma} \left(\frac{1}{z - b_{\gamma}} \right) - p_{\gamma}(z) \right] + g(z)$$

EXAMPLE 1:
$$f(z) = \frac{e^{2z}}{(z-1)^3}$$
About z=1, $f(z) = \frac{e^{2(z-1)+2}}{(z-1)^3}$
$$= \frac{e^2 e^{2(z-1)}}{(z-1)^3}$$

$$f(z) = e^{2} \frac{1}{(z-1)^{3}} \left[1 + \frac{2(z-1)}{1!} + \frac{4(z-1)^{2}}{2!} + \cdots \right]$$

$$= e^{2} \left[\frac{1}{(z-1)^{3}} + \frac{2}{(z-1)^{2}!} + \frac{4}{(z-1)^{2}!} + \frac{8}{3!} + \frac{16(z-1)}{4!} + \cdots \right]$$

$$= P_{\gamma}\left(\frac{1}{z-1}\right) + g(z)$$