HURWITZ THEOREM:

Statement: If the functions f,,(z) are analytic and # 0 in a region Q and if f,,(z) converges to f(z)
uniformly on every compact subset of Q, then f (2) is either identically zero or never equal to zero in Q.

Proof:

Given that f,,(2) are analytic and # 0 in a region Q.

Also given that f,,(z) converges to f(z) uniformly on every compact subset of Q.
Therefore, by theorem 1 f(z) is analytic in Q.

Claim: f(z) =0Vzenorf(z) #0Vzel.

Suppose f(z) = 0V z € 2, then the theorem is true.

Suppose not , then we have to prove f(z) # 0V z € .

Let z, € 2. Then there exists r > 0 such that f(z) # 0 on 0 < |z —z,| < r and |f(2)| has a positive
minimum of the circle C, |z — zy| = .

Thus m has a maximum on C.
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o m uniformly on C, since f,,(z) - f(2)uniformly onC.

Now

Also f',,(z) = f'(2)uniformly on C.
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That is, lim fc fn(z) = 2mi fc f(Z)

We know that — f j:"gz; dz is the number of zeros of f,,(z) enclosed by C.

Since f,,(z) # 0 on Q, we get f,,(z) # 0 on C.
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Hence lim - fon(Z)d
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This implies [, — —. f((zz))

i.e, The number of zeros of f(z) enclosed by C = 0.

This implies f(z,) # 0. Since z, is arbitrary, f(z) # 0 for all z in Q
Taylor series:

Statement:

If f(z) isanalytic in the region 2, containing zo, then the representation
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f@) = fz0) + B2 (2 = 20) + 22 (2 — 20)? 4 o Lo (2 — g 4

Is valid in the largest open disk of center z, contained in Q.

Proof: By taylor’s theorem,
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WKT £(2) = f(z) + T2 (2 — 20) + 22 (2 = 20)? + o+ Lo (2= 20)" + fra (2) (2 — 20)™
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i e G Here C is the circle |-zy| < r contained in Q and z lies inside C.

Where f+1(2) =

Let M denote the maximum of |f(&)] on C.
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For z lying inaclosed disk |z — zy| < p <, we have
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Mittag- Leffler’s theorem:

Let {b,} be a sequence of complex numbers with lim b, = oo and let P,(£) be polynomial without
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constant term. Then there are functions which are meromorphic in the whole plane with poles at the
points b, and the corresponding singular part P, (ﬁ). Moreover the most general meromorphic function
e’

of this kind can be written as

f(@) =%, [Py (i) - B (2) ] + g(z) where B, (z) are suitably chosen polynomials and g(z) is analytic

in the whole plane.
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Proof: The function B, (E) is analytic in |z| < |b,|.

This implies P, (ﬁ) has a taylor series expansion about the point zero.
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Let p, (z) be the partial sum of the series ending with the term of degree n, .
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Let M,, be the maximum value of B, (&) on || < |7y |, then for |z| < |Ty |

1
YN

= |py+1 (2) (Z)nyﬂ |

n,+1 1 Py (§)dg
(Z) Y Py |€|:|b7y| fny+1(€—Z)

< |Z|ny+1i My 27.[|b71’|
—= 277 /b ny+1 by
) 1

207 ny+1
=2M, (£
Y (|byl)

< ( 1 )ny+1 Myzny+2

22
Now choose n,, such that 2™ > M, 27.
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But) ziv converges and so by comparison test, ., [Py (z—

= ) — py(z)] converges to a function h(z)
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Hence h(z) is a meromorphic function with singular part P, (ﬁ)
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Let f(z) be a meromorphic function with poles b, .

Then g(z)=f(z)-h(z) is an analytic function in the whole plane.

Thatis f(z) =h(@)+g(2) =%, [Py (ﬁ) —p, (z)] +9(2)

EXAMPLE L.  f(2) = %
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